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(24) Modelling And Regression

Description

Our Modélling Study a??l nfluence of Fish Consumption on
Studentsa?? PI SA Scoresa?? as An Introductory Example

I will soon present our modelling study that attempts to present the variation in Covid-19 mortality ratesin the
first wave up to summer 2020. To illustrate this method, | use here a study we conducted some time ago [1]. My
colleague Volker Schmiedel, who is very interested in the importance of omega-3 fatty acids, gave the impetus for
this study. We asked the simple question:

Does the availability of omega-3 fatty acids in a country affect childrena??s PISA scores?

PISA (Programme for International Student Assessment) is, asiswell known, an internationally conducted,
standardized test to examine children&??s abilities at school. Volker Schmiedel came up with the idea of
correlating the fish consumption of a country with the PISA scores of that country and discovered a significant
correlation. The simple correlation between fish consumption and a countrya??s PISA scoreisr = .57, which is
not only significant, but also quite highly so. In fact, surprisingly high. After all, why should fish consumption be
related to studentsa?? knowledge at school? The correlation might be understandable only because of the omega-3
fatty acids, which are mainly found in oily fish, but also in dark green plants, algae and everything that feeds on
them. It is not easy to measure omega-3 levelsin a population. Y ou would have to take blood from a
representative sample of the population and determine the omega-3 content in, for example, the membranes of red
blood cells. To my knowledge, no one has ever done this systematically across a variety of countries. Fish
consumption is easier to measure, it is a so-called proxy variable. Because fish isamain supplier of omega-3 fatty
acids. And omega-3 fatty acids are important for us as essentia fatty acids. We have to take them in through food
because we cannot produce them ourselves. Since the industrial revolution at the end of the 18th century, omega-3
intake has decreased [2]. Omega-3 is not only central to the immune system because it is the precursor substance
for al cytokines with anti-inflammatory effects. It is especially important for nerve growth in children and
learning in old age. It is also important for maintaining cognitive performance. For example, the level of omega-3
in mothersa?? milk can predict the intelligence of schoolchildren to an astonishing degree [3, 4].

For all these reasons, Schmiedel &??s consideration was of course very clever: it is possible that the PISA score, as
an expression of the cognitive performance level of children, isrelated, among other things, to how much omega-
3 fatty acids they consume, roughly measured by the fish consumption of a nation. Now, of course, the question
immediately arises: What influences the PISA scorein particular? And if we know that, does fish consumption
play arolein addition to that?

The general principle: linear combination of weighted influence of variables

The general mathematical estimation formulafor such aquestion is:

y =a+12x; +12x, +12x5 +&7 12 x_ +e. (Equation 1)
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a?ya?? hereis, in general terms, the variable you want to clarify, i.e., for example, the variation in studentsa??
PISA scores, or in Covid-19 deaths in Europe.

a??aa?? is aconstant, or the so-called intercept. Graphically, it would be the point at which aregression line
intersects the x-axis, indicating the empirical zero point. One needs this value if one wants to make concrete
calculations for single individuals, or if one wantsto use afound regression equation in the future or with another
data set to calculate values. At the moment, this value is not so important for understanding the general principle
of clarifying variation.

The so-called 4?21287? weights are the regression weights or regression coefficients. If they are standardized, i.e.
they can assume a distribution between -1 and +1, they are usually rendered with the Greek 12 symbol. If they are
unstandardized, then b is usually noted. They indicate how great the influence of avariable x on the criteriony is.
If, for example, aregression weight were only 0.0001, then the influence of the variable with this weight would be
understandably very small. If 12isvery large, e.g. 0.8, then the influence of this variable is also relatively large. If
the weight is positive, then the variable has a positive influence: i.e. the greater X, the greater y. If the weight is
negative, then the variable has a negative influence: thus, the greater x, the smaller y.

Now you can see immediately from equation (1) that thisis alinear combination of variablesx, to x, basically
any number of variables or predictors that can be used to explain y, the criterion. That is the charm of modelling:
Y ou can use as many variables as you can collect for the explanation. There is apractical limit: Since these
regression weights are not smply found in the open, but have to be estimated by a computationally intensive
iteration procedure, you need a correspondingly large number of data sets to be able to make this estimate in a
stable manner.

Technically speaking, the least squares method is usually used for this: The computer averages the individual
variables, then uses different regression weights while holding everything else constant, squares the difference
between the mean and the weighted mean, and does this iteratively until the difference isaminimum. When such
procedures still had to be calculated by hand, it was very time-consuming and limited the number of variables for
that reason alone. Today, computers can do it in fractions of a second. But you still have to be aware of the fact
that the computer only calculates with what is available. And to be able to perform a stable estimation, the
computer needs &7? rule of thumb &?? about 10 cases per influence variable to be estimated or the associated
regression weight 12 [5].

Then, at the very end of equation (1), we see the 877e4??, sometimes represented as the Greek epsilon 8?? e -. This
isuniversal statistical language for a??error terma?? or &??residual&??. Thisisthe portion of the variation that
cannot be explained by these variables.

This genera principle of linear combination of weighted influence variables to &??predicta??, i.e. explain, an
individual value appliesto all modelling. In some regression methods, the combination of the individual
prediction terms is more complicated. In non-linear regressions, for example, there are quadratic, cubic or other
function terms. In logistic regressions, these regression elements are exponents of Eulerd??s number e. But the
principleis alwaysthe same: A set of variables is used to &??predict&d?? in an optimal combination a variable to be
explained, the criterion or dependent variable, that is, to elucidate as much as possible in its range of variation or
variance.
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Concretely, using the PI SA study:

We collected PISA scores from 64 countries, from which we a so had information on fish consumption. In
addition, we used data on economic development, in this case gross domestic product (because this indirectly
determines how much funding a country has), data on the availability of the internet in a country, as an indicator
of technological development, and the breastfeeding rate. All these data are available from public sources and are
intuitively and theoretically plausible influencing factors whose impact on a country@??s PISA score can be
estimated.

It can be seen at this point that the variables one feeds into such a model also depend on the question. Thisin turn
depends on theoretical knowledge and conceptual assumptions, and not infrequently, asin our case, also on the
availability of data.

By the way, the individual units, i.e. cases, in this study are not individual children but countries with their PISA
averages. Usually in such studies, individuals are the unit of analysis. In the PISA study and aso in our Covid-19
modelling, countries are the units of analysis or &??casesa??.

We have now calculated a linear regression model as described above. | reproduce the original Table Il of the
publication here as Table 1 and will then explain it:

Table II1. Results of regression analysis — dependent variable: PISA Mean Score Adjusted R? = .72; p < 0.0001; significant predictors in
italics.
Parameter Std.Err t-value p-value 3-weights 95.00%-Cnf.Lmt +95.00%-Cnf.Lmt
Intercept 117.1 14.3 2.64 0.01
GDP 5.65 8.0 0.70 0.5 0.10 0.18 0.37
Internet coverage 62.3 12.6 4.93 >0.0001 0.65 0.38 0.91
Breastfeeding 0.1 0.3 0.35 0.73 0.03 0.13 0.18
Fish consumption 9.8 4.3 2.28 0.03 0.20 0.02 0.38
GDP: gross domestic product in million USD; log-transformed
Internet coverage in percent; log-transformed
Breastfeeding: Exclusive breastfeeding for the first 3—-6 months in percent
Fish consumption: 1: 2-5 kg fish per year and person; 2: 5-10 kg fish; 3: 10-20 kg; 4: 20-30 kg: 5: 30-60 kg; 6 = < 60 kg

Table 18?? The Table I11 of the original publication with the model parameters of the regression
analysis

Y ou can see: we used five variables for prediction, GDP-Gross Domestic Product, a countrya??s internet
coverage, the percentage of children in a country who were breastfed, and at the end, a countrya??s fish
consumption, roughly measured in 6 reasonably continuously increasing categories (2-5 kg per person per year, 5-
10 kg, 10-20 kg, 20-30 kg, 30-60 kg, and more than 60 kg).

The latter isimportant because linear regression models have several assumptions. One is that the criterion
variables and all other variables must be reasonably normally distributed, and that the variables one uses for
prediction must be continuous variables. If they are not continuous but categorical, then you have to recode them
into so-called dummy variables, i.e. 1-0 codings (or -1 and +1) for individual categories, which are then
continuous again. In our case, | used the fish consumption variable both as a continuous variable and as a dummy-
coded variable for the individual categories. The differenceis negligible. Therefore, | report the model for the
continuous variable in the publication and discuss the potential problem in the discussion because a reviewer had
insisted on it.
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We see: The model is highly significant and can even resolve 72% of the variance with R2 = .72. This model
statistic is the first important finding. It tells us whether the statistical model isfirstly significant and secondly
how high the multiple correlation R, i.e. the correlation of all variables together with the criterion, is. Squared,
each correlation coefficient gives the variance explained. Example: |et a persona??s intelligence be correlated with
his subsequent income about r = .3 &?? which, incidentally, roughly corresponds to the empirical ratios; then the
variance thus elucidated would be r2 = .32 = .09 or 9%.

In our case, R2 = .72 (the multiple correlation coefficient, which describes the influence of several variables
simultaneoudly, is always capitalized). The variance elucidation with 72% is considerable. Thisis because only 2
variables are needed: internet coverage, which is aproxy for the economic-technical development of a country,
and fish consumption. This more detailed insight is the second important insight that statistical modelling
provides. It tells us which variables we use in our modelling contribute to this variance explanation, and how
much.

Y ou can see from Table 1 above that the beta weight for internet coverage is quite high at 0.65. Thisvariableis
also highly significant, while gross national product remainsirrelevant as a predictor. Thisis because internet
coverage and gross national product are very highly correlated with each other with r = .87 (thisis explained in
Table 2 of the publication) and in this case the model uses the variable that is a better predictor. This
automatically drops the other out of the equation. | have also done analyses with gross national product only. But
these have dightly lower variance explanations.

Now the analytical idea of thisanalysis would be: if a countrya??s PISA score can be explained by these social
variables (GDP, internet coverage, breastfeeding rate), then fish consumption should be irrelevant as a predictor.
What we see, however, is. the breastfeeding rate hardly plays arole. The betaweight of 0.03 is very small and not
significant. But fish consumption is a significant predictor at beta = .20.

In fact, one can take a quasi-experimental approach in such analyses and ask, for example: If you control for all
social variables, isfish consumption still asignificant predictor? In such a case, one proceeds step by step or
forces the system to include the social variables first and then, in the last place, or even in the last step, the
variable of interest. Thisis fish consumption here. Thatd??s what | did here, and you can see: Even if you include
all the other variables first, fish consumption is still a significant predictor. It explains an additional 4% of the
variance. So amodel without the predictor &7?fish consumption&?? would only have an R? = .68.

Still high, but lower. This allows us to conclude: When social-economic progress is taken into account, fish
consumption, and thus presumably omega-3 availability, is an additional, important predictor. The fact that these
variables together can explain 72% of the varianceis, in my view, astonishing. Of course, other factors also play a
role: how good the school system is, how good the teacher training is, how motivated the teachers are, how large
the classes are, how long children sleep, etc. But all of thiswe did not capture, or rather, we had no data on it. We
had data on school satisfaction from some countries and repested the analysis with school satisfaction for these
countries. But the picture did not change, and school satisfaction was not a significant predictor.

| have given the parameters or raw regression weightsin the first place in Table 1 above. These are not
standardized and provide information on how much a variable would be weighted in an actual prediction
calculation.

Then follows the standard error of this estimate. Thisis needed for the significance calculation, which iskindly
supplied by the statistics program. The distribution of these parameters follows the T-distribution, a statistical
distribution that is similar to the normal distribution, only steeper depending on the number of observations. From
it, we can obtain the probability of error: p. It tells us whether a regression weight has a significant, i.e. hasan
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influence beyond statistical randomness. It is quite possible that arelatively large regression weight is not
significant and, conversely, avery small oneis significant. This then means: The influence is present, but
statistically difficult to distinguish from arandom variation. Or: The influence is very small, but clearly beyond
random fluctuation.

The standardised beta weights that then follow in the next column can be interpreted as partia correlation
coefficients. They represent the correlation of the corresponding variable with the criterion, i.e. in this case with
the PISA score of acountry, if the influence of all other variables is kept statistically constant or factored out. (For
the variables aso have correlations with each other, which are then controlled for.)

Y ou can aso illustrate the principle graphically in a so-called Venn diagram, which | reproduce herein Fig. 1.

X3

Fig. 18?7 Venn diagram of the correlations of different predictors x,-x, with avariabley to be
elucidated

The blue circley represents our target variable, the criterion. The variables x4 to x, are possible predictors. They
have a certain correlation with the criterion 8?7 the overlap range &?? and often also a correlation with other
variables. For example, the own contribution of x,, that area not covered by either x, or X5 would be relatively
small. The own contribution of x5 is also not as high asit first appears, because the correlation with x, is very
high. Thisis called &??collinearityd??, acommon high correlation. Intelligent modelling checks this and uses, out
of 2 possible variables, the one with the highest own explanatory value. In our analysis, this was internet

coverage. Variable x,,, on the other hand, would have arelatively high explanatory value in this graphical example
and its own independent correlation with criterion y, without being related to the other variables. The pure blue of
y not covered by other overlapping circles, that would be the proportion of unexplained variance or in the
individual case, the residuals.

To understand residuals, it is useful to work through a concrete regression equation. We do this for the examples
of Chinaand Qatar from our dataset:
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China, the upward outlier in Figure 3 below, has the highest PISA scorein our dataset at 567.66 and Qatar the
lowest at 308. Breastfeeding rates are similar, asisinternet coverage, 87% in Qatar, 74% in China, but GDPis
very different, at $100,260 Million for Qatar and $6,747 Million for China (data from 2013). Now you can seein
Table 2: | log-transformed the value for the gross national product and for the internet coverage because the data
were too skewed and thus achieved an approximate normal distribution. Fish consumption is a 6-level,
approximately continuous variable.

Country PISA value Fish consumption Breastfeeding rate GDP transf. Intern. transf.
China 567.66 5 28% 8.816 4.304

Qatar 398 4 29% 11.515 4.466

Table 2 4?? Origina datafor 2 countries from our PISA study

We now use equation (1) and the datafrom Table 1, which give the original regression weights:
Yching = 117-1 + 5.65*8.816 + 62.34.304 + 0.1*28 + 9.8*5 +e =
117.1+49.81+268.14+ 2.8+ 49+ e=
486.85 +e
Yohingd??486.85 = €
567.66 87?486.85 =€
e=380.81

So the regression equation for China gives a PISA score 80.81 points lower than it actually is. Thisisthe upward
outlier in Fig. 3 below, which is pretty much at 80 points, or in the histogram in Fig. 2, the value at the far right of
the distribution.

Whoever wishes can now do the same with the data for Qatar and will find that the equation gives a negative error
or residual of about -100 points, i.e. Qatara??s PISA scores are estimated by the equation to be about 100 points
higher than they arein reality. (4??Realitya?? here means empirical reality.)

It would now be a question of more sophisticated analysis as to why thisis the case with these outliers. It could
be, for instance, that Chinese datais unreliable. That the school system is much better, etc.

Anyway, thisis how you see: Regression equations can be used for individual prediction, for example of new data
sets, which is often used in industry in process control. And in this way one also understands the function and
arithmetic magnitude of error terms or residuals e. They represent the error in the individual case, and the
unexplained variance in the case of atotal data set.

Consider prerequisites

Now, one thing to bear in mind about such an analysisisthat it will only yield valid analysis resultsif the
preconditions are met. | already mentioned two that one has to check before the analysis: Are the variables
reasonably normally distributed? They were in our case. | say &??reasonablya?? because the routines react
relatively robustly to aviolation of this assumption. If the normal distribution, especialy of the criterion variable,
isstrongly violated, one can use atrick and transform it logarithmically. Then it will often be normally
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distributed. Y ou can do the same with the other variables.

Furthermore, one takes alook at the residuals, i.e. the unexplained portions, those 28% of the variance, in our
case, that cannot be explained by these variables. They must be reasonably normally distributed. Publications
often show this graphically in the appendices. Similarly, a plot of the residual s against the predicted values should
not reveal any pattern. For if patterns are discernible, the assumption that the relationship is nonlinear islikely.

| reproduce herein Figures 2 and 3 the histogram of the residuals and the plot of the residuals vs. the predicted
values:
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Fig. 2 &?? Histogram of residuals
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Fig. 34?? Plot of residuals vs. predicted values

Y ou can see from Fig. 2: the residual s are reasonably normally distributed around 0. There are some outliers
where the predicted PISA scoreis amost 100 points too high or too low. But otherwise the model fits quite well.
Y ou can aso see these outliersin Figure 3. You can aso look at the outliers with statistics programs, in our case
the downward outlier is Qatar and the upward outlier is China. But otherwise, no pattern is discerniblein this plot.
A pattern would be something like a cloud rising continuously to one side.

The analytical concepts of linear models

Linear models can thus serve several purposes:

1. They are used to estimate the significance of possible predictor variables or independent variables and thus
their influence on the criterion or independent variable. In clinical studies and experiments, for example,
this can also be used to detect the influence of an experimental manipulation. Thisis then represented by a
categorical dummy variable that is 1/0-coded. The influence of avariable is shown by the size (and of
course the significance) of the regression weights. With standardized regression weights, denoted by b, this
can be done immediately. Thisis because the regression weights can be interpreted as partial correlation
coefficients, i.e. as the correlation of the predictor variable with the criterion variable when the influences of
all other variables are statistically controlled. In our example: fish consumption in acountry correlates with
the country&??s PISA score (and vice versa) with 0.20 if all the other variablesin the equation are
statistically controlled. That is, when their influence on fish consumption has been removed. Thus, one can
use the magnitude of 12 as an estimator for the influence of avariable. In the picture of Fig. 1: It isthe
overlaps of acircle with the y-circle without the share of other overlapping circles. If, asis often the case
with other regression models, the weights are not standardized, then one can use the relative size as a guide,
i.e. the sizerelative to all other regression weights.
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2. One can use aregression equation to make predictions for individual cases. Thisis mainly used in process
control, when you have determined a regression equation from standardized data sets that you can then
apply to new data sets. For analytical research, thisis rather lessimportant. | used this approach above to
make clear what role residuals play.

3. If you solve the entire equation over all data sets and estimate the statistical model as awhole, then you can
see how well the mode! fits the data overall. We saw from the model of the elucidation of the PISA score
that arelatively high explanation of variation is possible with thismodel. This analytical step iscalled
a??goodness of fitad??, or 8??model goodnessa??, or predictive power of the model. It has two main
components: an R2 value and F or Chi2 value with an associated p-value or probability of error. The R2
value is the squared multiple correlation coefficient, i.e. the correlation of al variables used in the equation
together with the criterion or dependent variable. It is squared because a squared correlation coefficient can
be interpreted as the proportion of variance explained or variation explained. The multiple correlation
coefficient R2 thus explains how much variance or variation, e.g. in the PISA scores of individual countries,
we can explain with the given variables, in our example 72% of the variation in the PISA scores. The fact
that we do not know and have not recorded all the variables that have a possible influence is expressed in
the unexplained variance and, at the individual level, in the error terms or residuals e.

This R2 valueis distributed according to the F or the chi-square distribution, depending on the model.
These distributions are known. Therefore, one aso normalizes them. Then one can define the area under the
curve as 8?7?14?? and thus as probability. Then one can aso define the area from a certain ordinate as a
probability, and if a certain value exceeds alimit or the areato theright of it is very small, then the
probability of such avalueisvery small. This can then be used to determine the probability of error of an
empirically found R2-value.

The overall model thus has two important ratios: the R2-value, the size of the variance explanation, and the
significance or statistical probability of error of thisvalue.

Infact, it depends on the size of the correlation, but also on the size of the data set, whether a multiple
correlation coefficient R2 is significant. | have aready dealt with this several times under the topic of
a??powerd?? or a7?statistical powerd??. This aso applies here: With avery large number of cases or data
sets, one can also get very small and irrelevant correlations, e.g. R% = 0.002, i.e. 0.2 % of the variance
explanation, significant. Conversely, alarge correlation may miss significance if the data set is small.
Ideally, we expect high variance elucidation to be significant at the same time.

In research, we are mostly interested in 1. &?? size of associations of predictors with the dependent variable or
outcome &?? and 3. 4?? amount of variance explained by a model.

In medical and social science research, it israre to find models that explain more than one-third to one-half of the
variance, and usually require something between 3 and 10 variables at least §?? and a factor of 10 to 20 more
Cases.

Large epidemiological surveys usually have many thousands of cases and can therefore also model numerous
possible influencing variables or predictors. The problem with al these studies is always. you never know
whether you have captured the really interesting and important variables and whether you are not missing an
important influencing variable. There is only oneindirect way to estimate this, namely R2, the amount of variance
explained. If thisis high, the probability that one has overlooked something important is low.

In our example above, we had 5 variables and 64 cases, so enough power to estimate the parameters.

We have now discussed classical linear regression using this example. Thisisthe basic structure. It can be
extended in very different ways, and the principleis aways basically the same.
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When one evaluates clinical trials or experiments, one usually introduces the variable that codes for the
intervention as an additional predictor alongside predictors of interest. If thisis significant, then you know that the
intervention had an impact, and you can also estimate the strength of the impact.

If the distribution of the criterion or target variable does not follow the normal distribution, then the regression
models are formalized dlightly differently. One then speaks of the 8??generalized linear or non-linear model 4?7
For example, one can calculate regressions on variables that follow a Poisson distribution, a gamma distribution, a
logistic or other distribution. Then the predictors are not coupled with asimple linear combination, but are either
first transformed with alogarithmic transformation and then additively combined. In the case of regressions that
follow alogistic distribution, the regression elements are linearly connected exponents of the natural number e. In
the case of nonlinear regressions, the regression elements are fitted to a suitable power.

But the important thing is to understand the principle | was trying to convey here: it isaways alinear, or non-
linear, combination of weighted predictive terms to resolve variance in a criterion. Sometime in the 1960s, it was
also shown arithmetically that the analysis of variance and the regression analysis, which had been so popular
until then, are conceptually equivalent [6]. Since then, one speaks of the 8??Genera Linear Model&?? or the
a??Generalized Linear Model&??. It is perhaps the most powerful tool for elucidating multiple influences on a
variable of interest.
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